TEMPERATURE EFFECTS ON MICROALGAL PHOTOSYNTHESIS-LIGHT RESPONSES MEASURED BY O₂ PRODUCTION, PULSE-AMPLITUDE-MODULATED FLUORESCENCE, AND ¹⁴C ASSIMILATION¹

Kasper Hancke,² Torunn B. Hanche, Lasse M. Olsen, Geir Johnsen
Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

and Ronnie N. Glud³
Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark

Short-term temperature effects on photosynthesis were investigated by measuring O₂ production, PSII-fluorescence kinetics, and ¹⁴C-incorporation rates in monocultures of the marine phytoplankton species Proorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 µmol photons m⁻² s⁻¹. Photosynthesis versus irradiance curves were measured at seven temperatures (0°C–30°C) by all three approaches. The maximum photosynthetic rate (Φₚₚ₋ₘₜₜ) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C–25°C), and showed a similar relative temperature response for the three applied methods, with Q₁₀ ranging from 1.7 to 3.5. The maximum light utilization coefficient (αₑ) was insensitive or decreased slightly with increasing temperature. Absolute rates of O₂ production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O₂ production and measured O₂ production showed a species-specific correlation, with 1.2–3.3 times higher absolute values of Φₚₚ₋ₘₜₜ and Φₚₚₚ when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O₂ production than the theoretical maximum (due to Mehler-type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.

Key index words: ¹⁴C assimilation; microalgae; O₂ production; PAM fluorescence; phi-max; photosynthetic parameters; quantum yield; temperature

Abbreviations: ETR, electron transport rate; PAM, pulse amplitude modulated; PE, photosynthesis-irradiance; POC, particular organic carbon; PQ, photosynthetic quotient; Q₁₀, temperature coefficient

¹Received 8 December 2006. Accepted 13 August 2007.
²Author for correspondence: e-mail kasper.hancke@bio.ntnu.no.
³Present address: Scottish Association for Marine Science (SAMS), Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland, UK.

Pelagic photosynthesis can be estimated by measuring O₂ evolution, PSII-fluorescence kinetics, or ¹⁴C assimilation. Each of the methods has its advantages and disadvantages, and all have been applied to assess the ecosystem primary production in various environments. The techniques, however, measure different products of the photosynthetic pathway and reflect different physiological processes with potentially different responses to environmental variables, such as temperature or salinity (Geider and Osborne 1992, Geel et al. 1997, Morris and Kromkamp 2003).

O₂-evolution measurements using O₂ electrodes allow for net O₂-production measurements in light and O₂-respiration measurements in the dark (Glud et al. 2000). Gross O₂ production can then be estimated as the net production added to the respiration (assuming constant respiration in light and dark). As such, the approach quantifies the O₂ production rate from the water-splitting complex in PSI. PSII fluorescence can be measured by PAM fluorometry and can be used to measure the operational quantum yield of PSII (Φₚₛₛᵢᵢ, Schreiber et al. 1986). From multiplying Φₚₛₛᵢᵢ with the quanta absorbed in PSII, the electron transfer rate in PSII can be calculated (Genty et al. 1989). The electron transfer rate (ETR) is a proxy for the gross photosynthetic rate (Kroon et al. 1993). The electrons generated in PSII are closely coupled to O₂ evolution but follow several pathways, among those, reduction of CO₂ via NAD(P)H production (Falkowski and Raven 1997). ¹⁴C-assimilation rate measurements quantify the amount of dissolved inorganic carbon (DIC) converted into cell biomass and reflect an activity intermediate to net and gross photosynthesis,
dependent on the incubation time (Falkowski and Raven 1997). For 1 h incubations, the technique is for convenience commonly assumed to indicate gross rates.

Photosynthetic O₂ production, \(\Phi_{\text{PSII}} \), and/or \(^{14} \text{C} \) assimilation have been compared in a number of studies of vascular plants (Demmig and Bjorkman 1987, Seaton and Walker 1990), macroalgae (Hanelt and Nultsch 1995, Longstaff et al. 2002), microphytobenthos (Hartig et al. 1998, Barranguet and Kromkamp 2000, Glud et al. 2002a), and marine phytoplankton (Falkowski et al. 1986, Koon et al. 1993, Geel et al. 1997, Flameling and Kromkamp 1998, Rysgaard et al. 2001, Morris and Kromkamp 2003). Although the investigations have been conducted under a variety of experimental conditions, a majority of studies on microalgae find a linear relationship between O₂ evolution and \(\Phi_{\text{PSII}} \) under moderate irradiance (Falkowski et al. 1986, Genty et al. 1989, Geel et al. 1997), sometimes with deviation at very low (Schreiber et al. 1995, Flameling and Kromkamp 1998, Masojidek et al. 2001) or very high irradiance conditions (Falkowski et al. 1986, Flameling and Kromkamp 1998). Different explanations for the deviation have been proposed: spectral difference in PAR sources, changes in O₂ consumption in the light, cyclic electron transport around PSII, and Mehler-type reactions [see Flameling and Kromkamp (1998) for an overview]. The relationship between O₂ production and \(\Phi_{\text{PSII}} \) is far from universal, and apparently there exists interspecies variance in the shape of the relationship and of the slope-coefficient (Barranguet and Kromkamp 2000, Masojidek et al. 2001). Additionally, it must be expected that environmental variables, such as temperature, can affect established relations for a given species. Even so, detailed comparison studies accounting for environmental variables, such as temperature, are still very limited (Barranguet and Kromkamp 2000, Morris and Kromkamp 2003). If fluorescence measurements are to be applied successfully for quantifying photosynthetic production, more careful and detailed studies of the temperature effect on the relationship between O₂ evolution, \(\Phi_{\text{PSII}} \), and \(^{14} \text{C} \) assimilation are required (Schofield et al. 1998, Kuhl et al. 2001, Glud et al. 2002b, Morris and Kromkamp 2003).

The aim of this study was to investigate the relationship between temperature and photosynthetic parameters derived from measurements of O₂ production, \(\Phi_{\text{PSII}} \), and \(^{14} \text{C} \) assimilation, using three culture-grown phytoplankton species—Pro. minimum, Pyr. parvum f. patelliferum, and Ph. tricornutum—selected to represent typical species of Scandinavian waters. Photosynthetic activity was quantified from (i) measured rates of O₂ production by O₂ microsensors \(\left(\text{FC}, \text{mmol} \text{O}_2 \cdot [\text{mg POC}]^{-1} \cdot \text{h}^{-1} \right) \), where POC stands for particulate organic carbon), (ii) calculated rates of O₂ production based on \(\Phi_{\text{PSII}} \) in combination with biooptical determination of quanta absorbed in PSII \(\left(\text{FC}, \text{mmol} \text{O}_2 \cdot [\text{mg POC}]^{-1} \cdot \text{h}^{-1} \right) \), and (iii) measured rates of \(^{14} \text{C} \) assimilation \(\left(\text{H}_{\text{14C}}, \text{mmol} \text{C} \cdot [\text{mg POC}]^{-1} \cdot \text{h}^{-1} \right) \). The temperature influence on photosynthetic parameters is discussed in a physiological context.

MATERIALS AND METHODS

Algal cultures. Unialgal cultures of Pro. minimum (strain 79A, Oslofjord, isolated by K. Tangen, culture at Trondhjem Biological Station [TBS]), Pyr. parvum f. patelliferum (isolated in Ryfylke, S-Norway, culture from University of Oslo), and Ph. tricornutum (unknown origin, TBS culture collection) were grown in semicontinuous cultures in 1/2 medium (Guillard and Ryther 1962), prefiltered (0.2 µm sterile filters [Minisart, Santorius, Goettingen, Germany] pasteurized at 80°C in 3 h), and enriched with silicate (Ph. tricornutum only). All cultures were subsampled from the culture collection of TBS and grown at 15 ± 1°C, 33 ppt salinity seawater, and constantly bubbled with filtered air. The illumination was continuous white fluorescent light (Philips TL 40 W/55 tubes, Guildford, Surrey, UK), providing 80 µmol photons m⁻² s⁻¹ as measured by means of a QSL-100 quantum sensor (Biospherical Instruments, San Diego, CA, USA) placed inside the culture flasks. The growth rate and the chl a concentration were maintained semicontinuous by diluting the cultures once per day corresponding to a specific growth rate of 0.2 µ·d⁻¹ for Pro. minimum and Pyr. parvum, and 0.7–0.8 µ·d⁻¹ for Ph. tricornutum both prior to and during the time of the experiments. The cultures were enriched with 1 g NaHCO₃ L⁻¹ to avoid a depletion of inorganic carbon and limiting pH conditions caused by high rates of photosynthesis (Olsen et al. 2006).

While growing, the physiological state of the cultures was monitored daily by measuring the ratio of in vivo chl a fluorescence before and after addition of DCMU (3-[3,4 dichlorophenyl]-1, 1-dimethylurea, 50 µM final concentration) in a Turner Designs (Sunnyvale, CA, USA) fluorometer. DCMU blocks the electron transport in PSII and results in a maximal fluorescence. The ratio of fluorescence measured before and after the addition of DCMU >2.5 indicates a healthy state of the cell (Saksenhaug and Holm-Hansen 1977). In our study, the ratio generally remained from 2.7 to 3.5.

Experimental conditions. Cultures were subsampled every morning to perform parallel measurements of photosynthesis versus irradiance (P/E curves) from O₂-photosynthesis, PAM, and \(^{14} \text{C} \)-assimilation measurements. The subsamples were placed in a water bath set at one of the seven experimental temperatures (0, 5, 10, 15, 20, 25, and 30°C), and the experiment started after the respective temperatures had stabilized within the sample (<30 min). Incident irradiance was maintained. Subsequently, the sample was simultaneously introduced to each of the experimental setups.

O₂-evolution and \(^{14} \text{C} \)-assimilation rates were measured in parallel after placing samples in a photosynthetron (Lewis and Smith 1983) in the dark and at 10 levels of irradiance from 3 to 570 µmol photons m⁻² s⁻¹ (PAR), determined by the QSL-100 quantum sensor (Biospherical Instruments). The photosynthetron was placed in a temperature-controlled laboratory at the respective temperature. The samples were illuminated from below with an adjustable xenon light source (Osmar 250 W, München, Germany), while a water-flow-through system prevented radiation heat. The correct temperature was ensured by continuous (1 s frequency) temperature measurements using small waterproof data loggers (TidbiT; Onset Computer Corp., Pocasset, MA, USA) installed in dummy samples.

Triplicate samples were incubated in 20 mL polyethylene scintillation vials for 1 h. Vials for O₂-evolution measurements...
were filled completely and closed with a lid mounted with a miniature pipe (internal diameter = 0.8 mm, length = 5 mm). The miniature pipe excluded headspace of air, avoided potential pressure accumulation from photosynthetic O₂ production, and allowed for insertion of an O₂ microsensor. Two milliliters of sample was incubated for carbon-assimilation measurements.

O₂ microsensor measurements. All oxygen measurements were carried out using Clark-type O₂ microelectrodes with a guard cathode (Revsbech 1989), having an external tip diameter of ~100 μm, stirring sensitivity of <1.5%, and a 90% response time of <4 s. The electrodes were calibrated using anoxic and air-saturated solutions at the specific temperature setting, as oxygen electrode signals are sensitive to temperature (Gundersen et al. 1998, Glud et al. 2000). The sensor current was measured using a picoammeter (Unisense, Aarhus, Denmark) connected to a strip-chart recorder (Kipp & Zonen, Delft, the Netherlands) and a PC (Revsbech and Jørgensen 1986). The gross O₂ production rate (P₀₂) was estimated by adding the dark respiration to the net O₂ evolution rate (both measured at each temperature), determined from the O₂ concentration change corrected for incubation time. All samples were mixed gently with a Pasteur pipette introduced through the miniature pipe prior to measuring, ensuring a homogeneous O₂ concentration within the vial. In several cases, the concentration of O₂ was monitored continuously during incubation by an electrode installed in a randomly selected sample, confirming linear O₂ evolution.

PAM measurements. Fluorescence was measured using a PAM-101 fluorometer with a 102 and 103 module (Walz, Effeltrich, Germany; Schreiber et al. 1986) equipped with a PAM-101 fluorometer with a 102 and 103 module (Walz, Effeltrich, Germany). The optical density (OD) was measured on glass fiber filters (GF/F, Whatman Inc., Florham Park, NJ, USA), according to Yentsch (1962) and Mitchell and Kiefer (1988), and converted to OD in suspension (Mitchell 1990). Absorption was calculated according to Mitchell and Kiefer (1988) and normalized to chl a to give aₙ(λ). In vivo fluorescence excitation spectra were measured according to Neori et al. (1988) and Johnsen and Sakshaug (1993), and quantum corrected using the dye Basic Blue 3 (Kopf and Heinze 1984). F₈₉(λ) was obtained from scaling the fluorescence excitation spectrum to the corresponding aₙ(λ) using the “no overshoot” procedure by matching the two spectra at wavelengths between 540 and 650 nm (Bidigare et al. 1989, Johnsen et al. 1997). The light absorption in PSII (aₚₛₛ(λ), m²·[chl a]⁻¹) was obtained by spectrally weighting F₈₉(λ) against the incubator light source according to the following equation:

\[
\text{a}_\text{PSII} = \frac{\int_400^{700} F_\text{PSII}(\lambda) \cdot E(\lambda) d\lambda}{E(\text{PAR})}
\]

where E(λ) is the spectral irradiance of the incubator light source, and E(PAR) is the integrated irradiance from 400 to 700 nm. The applied biooptical procedure above is described in detail in Hancke et al. (in press). Definitions of biooptical parameters used are given in Table 1.

Table 1. Definitions of the productivity, photosynthetic, and biooptical parameters used in the text. Photosynthetic parameters according to Sakshaug et al. (1997).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀₂</td>
<td>Carbon-specific measured O₂ production (net production + dark respiration; μmol O₂·[mg POC]⁻¹·h⁻¹)</td>
</tr>
<tr>
<td>P₈₉,PSII</td>
<td>Carbon-specific O₂ production calculated from Φ₈₉ and aₚₛₛ in absolute units (μmol O₂·[mg POC]⁻¹·h⁻¹)</td>
</tr>
<tr>
<td>P₈₉,14C</td>
<td>Carbon-specific ¹⁴C assimilation (μmol ¹⁴C·[mg POC]⁻¹·h⁻¹)</td>
</tr>
<tr>
<td>aₙ</td>
<td>Maximum light utilization coefficient normalized to carbon (μmol O₂ or ¹⁴C·[mg POC]⁻¹·h⁻¹)</td>
</tr>
<tr>
<td>P₈₉,MAX</td>
<td>Maximum photosynthetic rate normalized to carbon (μmol O₂·[mg POC]⁻¹·h⁻¹)</td>
</tr>
<tr>
<td>Eₛ</td>
<td>Light-saturation index (μmol photons·m⁻²·s⁻¹⁻¹)</td>
</tr>
<tr>
<td>Φₛₛ</td>
<td>Operational quantum yield for PSII charge separation (eq. 2, mol electrons·[mol quanta]⁻¹)</td>
</tr>
<tr>
<td>Φ₈₉,PSII, 14C,MAX</td>
<td>Maximum quantum yield for O₂, PSII, or ¹⁴C, respectively (mol product·[mol quanta]⁻¹)</td>
</tr>
<tr>
<td>aₙ₂₉₂₀</td>
<td>Spectrally weighted in vivo chl a-specific absorption (m²·[mg chl a]⁻¹)</td>
</tr>
<tr>
<td>aₙ₂₉₇₆</td>
<td>Spectrally weighted in vivo PSII-specific absorption (m²·[mg chl a]⁻¹)</td>
</tr>
</tbody>
</table>

POC, particulate organic carbon.
Calculation of O₂ evolution from PAM measurements in combination with biooptics. Electron transport rate is equal to the product of ΦPSII and the amount of quanta absorbed by PSII (ΔP₅₇₀). By knowing the stoichiometric ratio of oxygen evolved per electron generated in PSII, the rate of O₂ evolution (F'PSII) can be quantified (Kroon et al. 1993). Instead of calculating ETR, we directly calculated the O₂-production rate in absolute units (F'PSII, μmol O₂ [mg POC]⁻¹·h⁻¹), from equation 4. (See Hancke et al. in press for a discussion on different approaches for quantifying the amount of quanta absorbed by PSII.)

\[I_{PSII} = \Phi_{PSII} \cdot E \cdot Γ \cdot ΔP_{PSII} \]

where Γ is the stoichiometric ratio of oxygen evolved per electron generated at PSII. According to the standard Z-scheme of photosynthesis, four stable charge separations take place in both PSI and PSII, to evolve one O₂ molecule (i.e., eight electrons to yield one molecule of oxygen). According to this assumption, Γ will be 0.25 O₂ electrons⁻¹ (Kroon et al. 1993, Gilbert et al. 2000). Empirically, a higher number than eight electrons has been found, which may be due to alternative electron "loss" (e.g., Mehler-type reactions; Kromkamp et al. 2001, Longstaff et al. 2002). Hancke et al. in press). For simplicity, we assumed Γ to be 0.25 in this study.

Most papers that use PAM-estimated ΦPSII to calculate O₂-evolution rates assume that absorbed irradiance is distributed between PSI and PSII, with a ratio of 0.5 (Gilbert et al. 2000). This is a rough estimate, and the ratio is higher for most phytoplankton classes, with the consequence of underestimating the O₂ evolution from PSI (Johnsen and Sakshaug 2007). In this study, we have applied a biooptical procedure to measure the PSII-specific absorption directly.

Photosynthetic O₂-production rates obtained in the photosynthesron and in the PAM cuvette were compared in a pilot study by measuring PE curves of O₂ evolution in both experimental setups. An O₂ microsensor was inserted directly in the PAM cuvette (Hancke et al. in press), and measured rates were compared with the O₂-production rates measured in the photosynthesron. The PE curves calculated from the two experimental setups showed equivalent shapes and similar rates and had an average difference and a standard deviation for F'PSII and \(\Delta \) of 2.2 ± 21.3% and 22.7 ± 23.8%, respectively. Simultaneous measurements of ΦPSII verified reproducible photosynthetic responses between the pilot study and this study.

\[1^4C \text{ assimilation.} \]

Carbon-assimilation rate (\(P'_{14C} \)) was calculated from equation 5 (Geider and Osborne 1992):

\[P'_{14C} = \frac{dpm_{org}}{dpm_{org}} \cdot [\text{TCO}_2] \left(\frac{1}{dt} \right) \]

where \(dpm_{org} \) is the \(^{14}C\) activity in organic material (disintegrations per minute); \(dpm_{org} \) is the total \(^{14}C\) activity added to the sample; [\(\text{TCO}_2 \)] is the total inorganic carbon concentration; and \(dt \) is the incubation time.

After incubation, the samples were acidified with HCl to pH between 1.5 and 2 and left overnight in a fume hood without caps to remove all inorganic C (Geider and Osborne 1992). Samples were back-titrated with NaOH to pH ~8 before scintillation cocktail (Ultima Gold; Perkin-Elmer, Waltham, MA, USA) was added, and the activity was measured in a scintillation counter (Packard Tri-Carb 1900; GMI, Ramsey, MN, USA). [\(\text{TCO}_2 \)] was estimated from measured pH and total alkalinity (AT). AT was calculated after titration with HCl (Wedborg et al. 1999) and total inorganic carbon from Andersson et al. (1999). The dark-incubated uptake was generally <20% (<10% at temperature >15°C) of the light-incubated uptake and was subtracted in the rate calculations.

We observed no temperature influence on the dark-incubated \(^{14}C\) uptake.

\[\text{Curve fit regression and calculations of } Q_{b0}. \]

The PE curves were fitted from equation 6 (Webb et al. 1974), as no tendency of reduction of P at irradiance >\(E_b \) (photoinhibition) was observed for the applied range of irradiance (0–566 μmol photons·m⁻²·s⁻¹).

\[P = P_{\text{max}} \left(1 - \exp \left(- \frac{E}{P_{\text{max}}} \right) \right) \]

where \(k \) is the rate of the reaction, \(A \) is the Arrhenius constant, \(R \) is the gas constant (8.314 [J·mol⁻¹·K⁻¹]), and \(T \) is the absolute temperature (K). \(Q_{b0} \) was calculated from equation 8, for the temperature interval of 10°C to 20°C (Isaksen and Jørgensen 1996).

\[Q_{b0} = \exp \left(\frac{-E_a}{R \cdot (T + 10)} \right) \]

where \(\phi_{\text{PSII}} \) is the quantum yield for O₂ production (\(s_{\text{PSII}} \)) and \(\phi_{\text{PSII}} \) is the quantum yield for \(^{14}C\) assimilation (\(s_{\text{PSII}} \)).

\[\text{Q}_{\text{b0}} = \exp \left(\frac{-E_a}{R \cdot (T + 10)} \right) \]

where k is the rate of the reaction, A is the Arrhenius constant, R is the gas constant (8.314 J·mol⁻¹·K⁻¹), and T is the absolute temperature (K). \(Q_{b0} \) was calculated from equation 8, for the temperature interval of 10°C to 20°C (Isaksen and Jørgensen 1996).

\[Q_{b0} = \exp \left(\frac{-E_a}{R \cdot (T + 10)} \right) \]

where \(\phi_{\text{PSII}} \) is the quantum yield for O₂ production (\(s_{\text{PSII}} \)) and \(\phi_{\text{PSII}} \) is the quantum yield for \(^{14}C\) assimilation (\(s_{\text{PSII}} \)).

RESULTS

P-E data. PE curves were fitted to POC normalized production rates derived from O₂-microsensor measurements (\(F'_{\text{PSII}, \mu mol O_2 [mg POC]^{-1} \cdot h^{-1}} \)), quantum yield of charge separation in PSI (\(\phi_{\text{PSII}} \)) by PAM fluorescence (\(F'_{\text{PSII}, \mu mol O_2 [mg POC]^{-1} \cdot h^{-1}} \)), and \(^{14}C\) assimilation (\(F'_{14C}, \mu mol 14C [mg POC]^{-1} \cdot h^{-1}} \)), at temperatures from 0°C to 30°C, at 5°C intervals. P-E curves at 5°C and 20°C are shown for Pro. minimum, Pro. parvum, and Ph. tricornutum (Fig. 1). O₂-microsensor and \(^{14}C\)-assimilation rates were measured in triplicate, and
Error bars are shown (Fig. 1, a–c, g–i). Evident for all three species and three methods, the maximum production rates were clearly higher (2.2–6.0 times) at 20°C than at 5°C. We observed no sign of photoinhibition for the applied irradiance range (0–566 μmol photons m−2 s−1). The relationship between temperature and the photosynthetic parameters, calculated from O2 evolution, FPSII, and 14C assimilation, was first investigated for relative values (excluding the significance of the light absorption) normalized at 5°C, being the lowest temperature with minimal scatter (Fig. 2), and then for absolute values (calculated by the use of α_{PSII}, Fig. 3).

Temperature effects on relative P-E parameters. The relative response of the maximum photosynthetic rate (P_{max}^C) increased 2.5–6.0 times relative to the rate at 5°C, with increasing temperature, for all of the three investigated algal species and varied overall little between species and method (Fig. 2, a–c). P_{max}^C showed a temperature optimum at 20°C–25°C for Pro. minimum, followed by a decrease (Fig. 2a), whereas no clear sign of a temperature optimum was observed for Pry. parvum or Ph. tricornutum within the investigated temperature range (Fig. 2, b and c). The relative values for P_{14C} increased more with temperature than P_{O2}, indicating a slightly stronger temperature response for 14C assimilation than for O2 production, most apparent for Pro. minimum. The relative response of P_{PSII} with increasing temperature fell in between P_{14C} and P_{O2} for Pry. parvum and showed slightly lower temperature responses for Pro. minimum and Ph. tricornutum.

The temperature response on P_{max}^C was quantified by the Q10 factor (Table 2) calculated from Arrhenius plots (not shown). The average Q10 was 2.1 ± 0.2 (mean ± SE), and Q10 showed only small variance between methods and species, with an exception of P_{14C}^C for Pro. minimum. Apparently, Q10 values for P_{14C}^C were higher than for P_{O2}^C and P_{PSII}^C, supporting the observation of a stronger temperature response for C assimilation than for the two other methods.

Fig. 1. Photosynthesis versus irradiance (P-E) curves measured by (a–c) O2 microsensors (P_{O2}); (d–f) calculated from Φ_{PSII} (based on PAM measurements) in combination with biooptical measurements (P_{PSII}); and (g–i) measured 14C assimilation (P_{14C}) at 5°C (filled symbols) and 20°C (open symbols), respectively. The study was conducted on three unialgal cultures of Prorocentrum minimum (left column), Prymnesium parvum (middle column), and Phaeodactylum tricornutum (right column). Units for P_{O2} and P_{PSII} are in μmol O2 (mg POC)−1 h−1, and for P_{14C} in μmol 14C (mg POC)−1 h−1. POC, particulate organic matter.
Temperature had no or only little effect on relative values of \(a^C\), showing similar temperature responses for each of the three species and an average \(Q_{10}\) of 1.0 ± 0.2 (mean ± SE). \(Q_{10}\) values of 0.9 for Pry. parvum and Ph. tricornutum indicated a slight decrease of \(a^C\) for this species. No difference was observed among the three methods as a function of temperature for any of the species, arguing for an equivalent temperature response on photosynthetic \(O_2\) production, \(F_{PSII}\), and \(14^C\) assimilation in the light-limited part of the photosynthesis versus irradiance curve.

Relative values of \(E_k\) showed a strong temperature response (Fig. 2, g–i) and increased 2.6–6.5 times (relative to the rate at 5°C). As \(a^C\) generally was insensitive to temperature, the temperature response of \(E_k\) mirrored \(P_{\text{CO}_2}\). Similarly, as \(a^C\) did not differ between methods, the temperature response of \(E_k\) tended to be stronger for \(14^C\) assimilation than for \(O_2^*\) and \(F_{PSII}\)-based production rates.

Temperature effects on absolute values of P-E parameters. Increased temperature significantly increased the absolute values of \(P_{\text{max}}\) for the three investigated species (Fig. 3, a–c), in accordance with the relative response, but varied more between species and in some cases between methods. The absolute values of \(P_{max}^C\) supported the observation of a temperature optimum for Pro. minimum at 20°C–25°C and no temperature optimum for Pry. parvum and Ph. tricornutum within the investigated temperature range. The absolute values of \(P_{\text{max}}^F\) were overall lowest for Pro. minimum (Fig. 3a) and highest for Ph. tricornutum (Fig. 3c). \(P_{\text{max}}^F\) for the latter decreased slightly at 30°C, giving a weak indication of a temperature optimum at 25°C for \(P_{\text{CO}_2\text{max}}^F\) and \(P_{14^C\text{max}}^F\). As \(P_{\text{max}}^F\) values are carbon specific, the rates do correlate directly to maximum growth rates and reflect the
productivity of the studied species (MacIntyre et al. 2002).

Between methods, the absolute values showed some interspecies variation of P_{max} as a function of temperature. The method used had a significant effect on P_{max} for all three species ($P < 0.05$); however, the interaction between temperature and method (temperature \times method) was significant for Pry. parvum only, as $P_{\text{PSII, max}}$ showed 1.8–2.9 times higher absolute values than for the two other methods as a function of temperature ($P << 0.05$, Fig. 3b). The response of $P_{\text{O2, max}}$ and $P_{\text{14C, max}}$ was not significantly different. The temperature \times method interaction was nonsignificant for Pro. minimum ($P = 0.43$, Fig. 3a) and for Ph. tricornutum ($P = 0.07$, Fig. 3c), emphasizing that there was no difference of P_{max} among the three methodological approaches. Despite the statistical insignificance, $P_{\text{PSII, max}}$ for Ph. tricornutum (seemed to) show slightly higher absolute values than $P_{\text{O2, max}}$ and $P_{\text{14C, max}}$ (P-values are shown in Table 3).

The temperature effect on absolute values of α_{O2} was calculated from the slope of P_{max} as a function of temperature, from 5°C to 20°C, in an Arrhenius plot. The maximum photosynthetic rates of $P_{\text{O2, max}}$, $P_{\text{PSII, max}}$, and $P_{\text{14C, max}}$ were calculated from measured rates of O$_2$ production, Φ_{PSII}, and 14C assimilation, respectively.

The temperature effect on absolute values of α_{C} was insignificant (Pro. minimum, Fig. 3d) or slightly decreasing with increasing temperature (Pro. minimum, Ph. tricornutum and Ph. tricornutum, Fig. 3, e–f). The slight decrease of α_{C} was observed as α_{O2} (Pry. parvum), and α_{PSII} (Ph. tricornutum) decreased marginally. The additional values of α_{C} did not change with increasing temperature (P-values are shown in

Table 2. The temperature effect expressed as Q_{10} for the maximum photosynthetic rate of $P_{\text{O2, max}}$, $P_{\text{PSII, max}}$, and $P_{\text{14C, max}}$ for Proorocentrum minimum, Prymnesium parvum, and Phaeodactylum tricornutum, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Pro. minimum</th>
<th>Pry. parvum</th>
<th>Ph. tricornutum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{O2, max}}$</td>
<td>2.1</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>$P_{\text{PSII, max}}$</td>
<td>1.7</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>$P_{\text{14C, max}}$</td>
<td>3.5</td>
<td>2.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Q_{10} was calculated from the slope of P_{max} as a function of temperature, from 5°C to 20°C, in an Arrhenius plot. The maximum photosynthetic rates of $P_{\text{O2, max}}$, $P_{\text{PSII, max}}$, and $P_{\text{14C, max}}$ were calculated from measured rates of O$_2$ production, Φ_{PSII}, and 14C assimilation, respectively.
Table 3. P-values of statistical tested variance and covariance (ANCOVA) for the significance of temperature, method, and the interaction between temperature and method (temperature × method).

<table>
<thead>
<tr>
<th></th>
<th>Prorocentrum minimum (0–20°C)</th>
<th>Pro. minimum (0–30°C)</th>
<th>Prymnesium parvum (0–30°C)</th>
<th>Phaeodactylum tricornutum (0–30°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_{PSII} max</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>*** ($P < 0.001$)</td>
<td>–</td>
<td>*** ($P < 0.001$)</td>
<td>*** ($P < 0.001$)</td>
</tr>
<tr>
<td>Method</td>
<td>*** ($P < 0.001$)</td>
<td>–</td>
<td>*** ($P < 0.001$)</td>
<td>*** ($P < 0.001$)</td>
</tr>
<tr>
<td>Temperature × method</td>
<td>NS ($P = 0.43$)</td>
<td>–</td>
<td>*** ($P < 0.001$)</td>
<td>NS ($P = 0.07$)</td>
</tr>
<tr>
<td>ζ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>NS ($P = 0.23$)</td>
<td>*** ($P < 0.001$)</td>
<td>*** ($P < 0.001$)</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td>*** ($P < 0.001$)</td>
<td>*** ($P < 0.001$)</td>
<td>*** ($P < 0.001$)</td>
</tr>
<tr>
<td>Temperature × method</td>
<td></td>
<td>NS ($P = 0.71$)</td>
<td>NS ($P = 0.96$)</td>
<td>NS ($P = 0.50$)</td>
</tr>
</tbody>
</table>

A significance of temperature × method indicates that the relationship between the response variable (ζ C or F_{max}) and temperature depended on the method used.

** ***A significant effect ($P < 0.05$).

NS, nonsignificant ($P > 0.05$).

Table 3). The temperature × method interaction was not significant for all of the species, demonstrating no difference between the slopes for the three methods applied. Consequently, the temperature response on the three methods was the same. The method, however, had a significant effect on ζ C, resulting in significantly higher absolute values of ζ_{PSII} compared with ζ_{O2} and ζ_{14C} for all three species. This offset was especially clear for _Prymnesium parvum_, as ζ_{PSII} was 1.7–3.3 times higher than ζ_{O2} and ζ_{14C} (Fig. 3c). The two latter values were not significantly different. For _Phaeodactylum tricornutum_, ζ_{PSII} was 1.1–1.7 times higher than values for ζ_{O2} and ζ_{14C} (Fig. 3f). Two outliers of ζ for _Phaeodactylum tricornutum_ (ζ_{O2} at 0°C, and ζ_{14C} at 15°C) have been eliminated from the data set due to unrealistic values caused by high scatter at low irradiances.

As ζ C was constant or slightly decreasing with increasing temperature, the light saturation index (E_k) vaguely increased or mirrored the F_{max} temperature response (Fig. 3, g–i). E_k for _Pro. minimum_ increased linearly to a temperature optimum at 20°C–25°C followed by a subsequent decrease. For _Prymnesium parvum_ and _Phaeodactylum tricornutum_, E_k increased continuously with increasing temperature for all three methods. The relatively higher values of ζ_{PSII} and $F_{PSII,\text{max}}$ compared with the two other methods, for _Prymnesium parvum_ and _Phaeodactylum tricornutum_, counteracted each other, resulting in very similar values of E_k for the three methods as a function of temperature.

Temperature effects on the maximum quantum yield. The temperature effects on the maximum quantum yield (Φ_{max}) seemed to be negligible (_Pro. minimum_) or lead to a minor decrease with increasing temperature (_Prymnesium parvum_ and _Phaeodactylum tricornutum_, Fig. 4). $\Phi_{PSII,\text{max}}$ values were in the range of 0.6–0.75 and were the lowest for _Pro. minimum_. $\Phi_{PSII,\text{max}}$ was the lowest for _Prymnesium parvum_ (0.06–0.13), but within the same range for _Pro. minimum_ and _Phaeodactylum tricornutum_ (0.08–0.15), respectively. The lower $\Phi_{PSII,\text{max}}$ lead to a higher minimum quantum requirement (QR, the inverse of the maximum quantum yield; 1/Φ_{max}) for _Prymnesium parvum_ than for the two other species: 0.8–2.7 times higher than for _Pro. minimum_ (1.9 ± 0.7 times, mean ± SD) and 1.7–3.1 times higher than for _Phaeodactylum tricornutum_ (2.2 ± 0.5).
times, mean ± SD). The QR for Pro. minimum and Ph. tricornutum was similar.

The calculated PSII : 14C max was lower than PSII : 02 max for Pro. minimum but slightly higher for the two other species, in contradiction to established theory. We have no obvious explanation for this finding other than it is likely that 14C was overestimated because of few measuring points and high scatter within the light-limited part of the P-E curve, which would lead to an overestimation of 14C max. Data for 14C max are not shown.

DISCUSSION

The relationship between P-E parameters calculated from rates of O2 production, PSII, and 14C assimilation was investigated as a function of short-term changes in temperature. The results demonstrated that 14C max increased and 14C was more or less insensitive to increasing temperature for all three species investigated, as is typical for most eukaryote algae (Davison 1991). Generally, this observation is not surprising as 14C represents light-limited photosynthesis and, as such, is primarily a function of photochemical light reactions (not enzyme dependent), and 14C max describes the light-saturated processes of photosynthesis and appears to be limited by enzyme activity associated with the carbon metabolism of the dark reactions (assuming excess nutrients; Davison 1991, Sakshaug et al. 1997).

Temperature effects on 14C max. The relative values for 14C max tended to increase more with temperature than 02 max, indicating a slightly stronger temperature response for 14C assimilation than for O2 production, most apparent for Pro. minimum (Fig. 2). This observation was supported by the Q10 values (Table 2). Theoretically, this finding was expected since 14C expresses gross carbon-uptake rates excluding respiratory activity (Sakshaug et al. 1997), whereas 02 probably underestimated the gross O2-production rate due to an enhanced O2 consumption in the light compared with the dark, which 02 did not account for. Enhanced O2 consumption in the light is well documented for marine microalgae, as both intercellular (photorespiration and mitochondrial activity) and extracellular (e.g., bacterial metabolism) O2 consumption is stimulated by photosynthesis (Weger et al. 1989, Beardall et al. 1994, Lewitus and Kana 1995, Xue et al. 1996). On average, for several algae classes, true gross O2 production (i.e., measured by the dual isotope technique) has been observed to yield 20%–30% higher rates compared with rates obtained by adding the dark respiration to the net O2-production rate (Weger et al. 1989, Lewitus and Kana 1995). All the above processes are stimulated by temperature, and, hence, the discrepancy between the dark and the light O2-consumption rate will increase with increasing temperature (Davison 1991, Morris and Kromkamp 2003). This trend explains the relatively stronger temperature response for 14C max than for 02 max, which will be further enhanced if the temperature response (Q10) on the O2-consumption processes exceeds the response of photosynthesis, as found for benthic microphytes (Hancke and Glud 2004).

The potential for photorespiration increases with increasing temperature, as the affinity of RUBISCO for O2 is reduced relative to the affinity for CO2 with increased temperature (Berry and Raison 1981). However, the importance of photorespiration in microalgae might be suppressed by the occurrence of a CO2-concentrating mechanism (Lewitus and Kana 1995).

Although the maximum photosynthetic rate is related only to the number of photosynthetic units (n) and the minimum turnover time for electrons (τ), P max = n · τ (Dubinsky et al. 1986), the rate-limiting step of the photosynthetic pathway has been widely debated (Sakshaug et al. 1997). The relative temperature response of PSII max followed the temperature response of the two other techniques. This observation demonstrated that PSII from intact algae cells responded similarly to the rate of O2 evolution and 14C assimilation, to a short-term temperature change. This is consistent with the hypothesis that the overall rate-limiting reaction for light-saturated photosynthesis is carbon fixation rather than electron transport, as suggested by Sukenik et al. (1987). For our data, this finding implies that PSII as well as O2 production must be limited by carbon-fixing enzymes (i.e., the RUBISCO complex), and stresses that PSII and O2-production rates were not separated from the 14C-fixation rate, as a function of short-term temperature changes. These data are consistent with the observation of a linear relationship between B (chl a normalized rates of 02) and ETR as function of temperature, for temperatures between 10°C and 30°C (Morris and Kromkamp 2003). However, their data deviated from linearity at the extremes of the investigated temperature range (5°C and 35°C).

For absolute values of the maximum photosynthetic rate, the relationship between rates of O2 production and 14C assimilation is known as the photosynthetic quotient, PQ (Laws 1991). Calculating PQ as the ratio between 02 max and 14C max resulted in values between 1.2 and 3.6 (average for all data = 1.8 ± 0.7), which is consistent with a general PQ of ~ 1.4 (Laws 1991, Sakshaug et al. 1997). As mentioned above, 02 max might be an underestimate of the gross O2-production rate. However, 14C max may underestimate the gross carbon uptake, as 15 min incubations have been shown to result in higher carbon-uptake rates than 60 min incubations, which are used in this study (Lewis and Smith 1983, MacIntyre et al. 2002). PQ tended to decrease with increasing temperature for the three species investigated, with a slope coefficient of −0.03 to −0.05 (~ Q10 of 0.81–0.90), and was thus
shown to be temperature sensitive. This finding could be explained by a more pronounced increase in $F_{14C_{\text{max}}}$ compared with $F_{O2_{\text{max}}}$ as seen from the Q_{10} (Table 2). An alternative explanation to a light-enhanced O$_2$ consumption decreasing PQ with increasing temperature is a potential increase in electron cost for nutrient uptake (Laws 1991).

In this study, we quantified the PSII electron flow and calculated the absolute rate of O$_2$ production in PSII (μmol O$_2$·[mg POC]$^{-1}$·h$^{-1}$) by combining Φ_{PSII} (from PAM measurements) with the biooptically determined quanta absorbed in PSII, \bar{a}_{PSII} (eq. 4; Genty et al. 1989, Johnsen and Sakshaug 2007, Hancke et al. in press). The aim was to compare absolute rates of calculated O$_2$ production from PSII with measured rates of O$_2$ production and 14C assimilation, where most studies relate only to relative rates of PSII efficiency (e.g., relative ETR) due to the challenge of measuring the light absorption in PSII. The results demonstrated a species-specific correlation among the three methods, with F_{PSII} showing higher absolute values of F_{max} and σ_C than those determined from measured O$_2$ production (F_{O2}) and 14C assimilation (F_{14C}) in most cases (Fig. 3).

The absolute values of F_{PSII} showing a species-specific offset compared with F_{O2} and F_{14C} might originate in assuming that $\Gamma = 0.25$ (eq. 4). Assuming that Φ_{PSII} is accurately measured by the PAM technique, which is reasonable (Genty et al. 1989), the divergence between measured O$_2$ production and calculated O$_2$ production (from PSII fluorescence) can only be caused by two parameters: the absorption properties ($\bar{a}_{\text{PSII}}^\pi$) or the amount of O$_2$ evolved per electron generated in PSII (Γ). As we believe that $\bar{a}_{\text{PSII}}^\pi$ is a good measure of the PSII absorption (Johnsen and Sakshaug 2007, Hancke et al. in press), we suggest that the electrons needed per O$_2$ evolved are the major source for the difference between measured and calculated rates of O$_2$ production. [See Johnsen and Sakshaug (2007) for a discussion on the absorption by nonphotosynthetic versus photosynthetic efficient pigments and the relation to PSII and light-harvesting complexes.]

The calculated $\Phi_{\text{PSII}}F_{O2_{\text{max}}}$ for Pry. parvum was in the range of 0.06–0.13 (Fig. 4), corresponding to a QR of 8.0–17.3 mol photons$^{-1}$·mol O$_2$ produced$^{-1}$. This rate is 1.1–2.5 times higher than the theoretical minimum (see below) and was on average 1.9 and 2.2 times higher than the QR for Pro. minimum and Ph. tricornutum, respectively. For the two latter species, the QR was in the range of 5.7–10.4 and 5.1–9.4, respectively. As $\Phi_{\text{PSII_{max}}}$ did not differ markedly between the three species, the higher Φ_{PSII} $F_{O2_{\text{max}}}$ for Pry. parvum (of 1.1–2.5 times) is likely the explanation for the offset of F_{PSII} compared with F_{O2} and F_{14C} for this species. The offset was apparently temperature insensitive, which is consistent with the above explanation and is further supported by the equivalent Q_{10} values of the three methods.

The theoretical maximum quantum yield for O$_2$ when calculated from total absorption (\bar{a}^π, not the PSII-specific absorption) is 0.125 O$_2$ electron$^{-1}$ (equivalent to a QR = 8 electrons O$_2^{-1}$). To correct

| Table 4. Measured \bar{a}^π and $\bar{a}_{\text{PSII}}^\pi$ for each subsample incubated in the pulse-amplitude-modulated (PAM) fluorometry setup (halogen light source) and O$_2$-production/14C-assimilation setup (xenon light source) for each experimental temperature, for Prorocentrum minimum, Prymnesium parvum, and Phaeodactylum tricornutum. |
|---|---|---|---|---|---|---|---|
| **Temp (°C)** | **PAM incub. setup (halogen lamp)** | | **O$_2$, 14C-incub. setup (xenon lamp)** | | | |
| | \bar{a}^π | $\bar{a}_{\text{PSII}}^\pi$ | $\bar{a}^\pi/\bar{a}_{\text{PSII}}^\pi$ | \bar{a}^π | $\bar{a}_{\text{PSII}}^\pi$ | $\bar{a}^\pi/\bar{a}_{\text{PSII}}^\pi$ |
| **Pro. minimum** | | | | | | |
| 0 | 0.0075 | 0.0058 | 1.29 | 0.0067 | 0.0054 | 1.24 |
| 5 | 0.0065 | 0.0047 | 1.38 | 0.0058 | 0.0044 | 1.32 |
| 10 | 0.0071 | 0.0053 | 1.34 | 0.0063 | 0.0050 | 1.26 |
| 15 | 0.0073 | 0.0056 | 1.30 | 0.0065 | 0.0050 | 1.30 |
| 20 | 0.0068 | 0.0055 | 1.24 | 0.0060 | 0.0049 | 1.22 |
| 25 | 0.0074 | 0.0057 | 1.30 | 0.0066 | 0.0052 | 1.27 |
| 30 | 0.0062 | 0.0049 | 1.27 | 0.0057 | 0.0043 | 1.33 |
| **Pry. parvum** | | | | | | |
| 0 | 0.0087 | 0.0074 | 1.18 | 0.0078 | 0.0068 | 1.15 |
| 5 | 0.0085 | 0.0073 | 1.16 | 0.0077 | 0.0066 | 1.17 |
| 10 | 0.0093 | 0.0076 | 1.22 | 0.0083 | 0.0070 | 1.19 |
| 15 | 0.0092 | 0.0077 | 1.19 | 0.0083 | 0.0070 | 1.19 |
| 20 | 0.0080 | 0.0068 | 1.16 | 0.0083 | 0.0072 | 1.15 |
| 25 | 0.0088 | 0.0076 | 1.13 | 0.0088 | 0.0078 | 1.13 |
| 30 | 0.0131 | 0.0109 | 1.20 | 0.0121 | 0.0096 | 1.26 |
| **Ph. tricornutum** | | | | | | |
| 0 | 0.0075 | 0.0062 | 1.21 | 0.0070 | 0.0057 | 1.23 |
| 5 | 0.0075 | 0.0059 | 1.27 | 0.0072 | 0.0054 | 1.33 |
| 10 | 0.0073 | 0.0057 | 1.28 | 0.0071 | 0.0053 | 1.34 |
| 15 | 0.0074 | 0.0057 | 1.30 | 0.0072 | 0.0053 | 1.36 |
| 20 | 0.0094 | 0.0076 | 1.24 | 0.0088 | 0.0071 | 1.24 |
| 25 | 0.0009 | 0.0083 | 1.19 | 0.0092 | 0.0076 | 1.21 |
| 30 | 0.0101 | 0.0078 | 1.29 | 0.0094 | 0.0073 | 1.29 |

All cultures were grown at 80 μmol photons·m$^{-2}$·s$^{-1}$ at 15°C.
for light absorption by PSI and photoprotective pigments, we based the quantum yield calculation on the light absorption in PSII (\(\tilde{a}^\text{PSII}\)) only. Consequently, the theoretical maximum quantum yield must be between 0.125 and 0.25, and we propose that it can be calculated from equation 10 as follows:

\[
\text{theoretical}^{\text{PSII}} \Phi_{\text{O}_2\text{max}} = 0.125 \cdot \left(\frac{\tilde{a}^\text{a}}{\tilde{a}^\text{PSII}} \right) \quad (10)
\]

Applying this equation to our data gave theoretical maximum quantum yields for O\(_2\) in the range of 0.155–0.165, 0.141–0.157, and 0.151–0.170 mol O\(_2\) \((\text{mol photons})^{-1}\) for \(\text{Pro. minimum}\), \(\text{Pry. parvum}\), and \(\text{Ph. tricornutum}\), respectively (Fig. 4, small open circles). The theoretical maximum quantum yield for O\(_2\) was temperature insensitive, as \(\tilde{a}^\text{PSII}\) (Table 4). The average of the corresponding theoretical minimum QR was then 6.3 ± 0.2, 6.8 ± 0.2, and 6.3 ± 0.3 for the three species, respectively.

Values for the QR for O\(_2\) production well higher than the theoretical minimum have commonly been published (Myers 1980, Gilbert et al. 2000). For freshwater phytoplankton, Gilbert et al. (2000) determined that absolute ETRs obtained from PSII fluorescence tend to overestimate primary production rates of \(^{14}\text{C}\) fixation. They ascribe the discrepancy to the effect of pigments in phytoplankton cells and to a noncarbon-related electron flow (e.g., nitrogen fixation), photorespiration, and the Mehler reaction. They assumed a PSII:PSI ratio of 0.5 but corrected the absorbance spectra for nonphotosynthetic pigments according to Schofield et al. (1996).

Dividing \(\Phi_{\text{PSII max}}\) by \(^{\text{PSII}}\Phi_{\text{O}_2\text{max}}\) yields the exact number of electrons generated in PSII needed to produce one O\(_2\) molecule. However, since \(\Phi_{\text{PSII max}}\) and \(^{\text{PSII}}\Phi_{\text{O}_2\text{max}}\) were measured in two different experimental setups, our data do not support such a calculation. However, as \(\Phi_{\text{PSII max}}\) differed by only little, the result would follow the trend of \(^{\text{PSII}}\Phi_{\text{O}_2\text{max}}\). The higher QR for \(\text{Pry. parvum}\) than for \(\text{Pro. minimum}\) and \(\text{Ph. tricornutum}\) would influence both \(^{\text{C}}F_{\text{max}}\) and \(\tilde{a}^\text{C}\). The temperature effect on \(\Phi_{\text{max}}\) is discussed below.

The lower quantum yield for O\(_2\) production than the theoretical maximum, leading to the offset between \(^{\text{C}}F_{\text{PSII}}\) and \(^{\text{C}}F_{\text{O}_2}\) can be caused by several electron-consuming or oxygen-consuming pathways (e.g., cyclic electron transport in PSI, pseudocyclic transport in the Mehler reaction, and light-dependent mitochondrial respiration; Flameling and Kromkamp 1998, Longstaff et al. 2002). Our data do not offer a separation between these processes, but it seems likely that cyclic electron transport around PSI or a Mehler-type of reaction (where the O\(_2\) produced at PSI is reduced again at PSI) could contribute to the offset.

Nutrient-enriched treatments have been shown to lower the quantum requirement from ∼8 to 5 (mol electrons absorbed per mol O\(_2\)) in experiments with the marine macroalga \(\text{Ulva lactuca}\) (Chlorophyta, Longstaff et al. 2002). In our experiments, all of the cultures were grown in f/2 medium, and, hence, we assumed that the nutrients were not limited and that no reduction of the quantum yield was caused by this reason.

Temperature acclimation of light-harvesting properties in the form of pigment complexes involves adjustment in both number and ratio of several photosynthetic pigments (Davison 1991). However, it is unlikely that the light-harvesting properties changed in our short-term temperature incubations, as all the cultures were grown at a constant temperature (15°C) and irradiance regime (80 µmol photons·m\(^{-2}\)·s\(^{-1}\)). Besides, neither \(\tilde{a}^\text{a}\) or \(\tilde{a}_{\text{PSII}}\) showed any correlation with temperature, nor did the relationship between them. Additionally, \(\tilde{a}_{\text{PSII}}\) excludes the absorption by PSI and any photoprotective carotenoids, including both diadinoxanthin and diatoxanthin (Johnsen et al. 1997, Johnsen and Sakshaug 2007). Hence, a potential change in the absorption properties caused by photoacclimation, during the incubations, would not influence \(\tilde{a}^\text{a PSII}\) or the rate of \(^{\text{C}}F_{\text{PSII}}\).

Temperature effects on \(\alpha^\text{C}\) and \(E_k\). The relative and absolute values of \(\alpha^\text{C}\) showed an analogous response to a short-term temperature change and were demonstrated to be insensitive (\(\text{Pro. minimum}\)) or slightly decreasing (\(\text{Pry. parvum}\) and \(\text{Ph. tricornutum}\)) with increasing temperature. This trend was tested using a statistical test of covariance (Table 3). As the slope of \(\alpha^\text{C}\) as a function of temperature was similar for the three methods and the interaction of temperature × method was insignificant \((P = 0.5–0.96)\), we concluded that the temperature response for the three methods was the same for all three species. This is visually evident as seen from the plot of the relative values, as normalized at 5°C (Fig. 2, d–f). The absolute values of \(\alpha^\text{C}\) demonstrated an offset of \(\alpha^\text{C}_{\text{PSII}}\) compared with \(\alpha^\text{C}_{\text{O}_2}\) and \(\alpha^\text{C}_{14\text{C}}\), which was constant for the entire temperature range, arguing for a linear temperature-insensitive relationship between rates obtained from the three methods, in the light-limited part of the PE curve. The offset of \(\alpha^\text{C}_{\text{PSII}}\) was similar to the offset of \(^{\text{C}}F_{\text{PSII max}}\), and we therefore conclude that the offset was general for the \(\Phi_{\text{PSII}}\)-based O\(_2\)-production rates \(^{\text{C}}F_{\text{PSII}}\), for the entire irradiance range.

A linear offset of \(^{\text{C}}F_{\text{PSII}}\) compared with \(^{\text{C}}F_{\text{O}_2}\) argues for a linear relation between the PSI electron transport and the measured O\(_2\) production; however, our experimental setup did not support a direct comparison, as \(^{\text{C}}F_{\text{PSII}}\) and \(^{\text{C}}F_{\text{O}_2}\) were measured at different irradiance levels (but within the same range). However, in a previous study, we observed a linear relationship between \(^{\text{C}}F_{\text{PSII}}\) and \(^{\text{C}}F_{\text{O}_2}\) (as well as for \(\Phi_{\text{PSII}}\) and \(^{\text{PSII}}\Phi_{\text{O}_2}\)) for the same
Table 5. Chl a to C ratios (w/w) for *Proorocentrum minimum*, *Prymnesium parvum*, and *Phaeodactylum tricornutum* for each subsample incubated at one of the experimental temperatures (see Materials and Methods).

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pro. minimum</th>
<th>Pry. parvum</th>
<th>Ph. tricornutum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0113</td>
<td>0.0252</td>
<td>0.0324</td>
</tr>
<tr>
<td>5</td>
<td>0.0124</td>
<td>0.0262</td>
<td>0.0294</td>
</tr>
<tr>
<td>10</td>
<td>0.0127</td>
<td>0.0258</td>
<td>0.0317</td>
</tr>
<tr>
<td>15</td>
<td>0.0117</td>
<td>0.0285</td>
<td>0.0304</td>
</tr>
<tr>
<td>20</td>
<td>0.0115</td>
<td>0.0275</td>
<td>0.0244</td>
</tr>
<tr>
<td>25</td>
<td>0.0117</td>
<td>0.0265</td>
<td>0.0238</td>
</tr>
<tr>
<td>30</td>
<td>0.0115</td>
<td>0.0192</td>
<td>0.0232</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0118</td>
<td>0.0256</td>
<td>0.0279</td>
</tr>
<tr>
<td>SD (CV)</td>
<td>0.0005 (4.4%)</td>
<td>0.0030 (11%)</td>
<td>0.0040 (14%)</td>
</tr>
</tbody>
</table>

Growth conditions as in Table 4.

species when measured simultaneously in the same incubation chamber, under equivalent growth conditions (Hancke et al. in press).

A linear relation between F_{PSII} and F_{O2} aligns with Geel et al. (1997) who also found a linear relation between PSII ETRs and O_2-production rates at light-limited conditions in several marine phytoplankton species, including *Ph. tricornutum*. The relation between ETR and photosynthetic O_2 evolution has been investigated in a range of studies. Although the investigations were conducted under a variety of experimental conditions, a majority of these studies describe a linear relationship between O_2 production and Φ_{PSII} under moderate irradiance (Falkowski et al. 1986, Genty et al. 1989, Geel et al. 1997). Nonlinear or curvilinear correlations are described at high irradiance conditions (Falkowski et al. 1986, Schreiber et al. 1995, Flameling and Kromkamp 1998, Masojidek et al. 2001), with an excess of electron transport compared with O_2 production, or at very low irradiance presumably due to light-enhanced dark respiration (Flameling and Kromkamp 1998). A close coupling between the quantum yield for O_2 production and charge separation in PSII, but not between the quantum yield for O_2 production and 14C fixation, has also been reported (Kroon et al. 1993). For the deviations, explanations such as spectral difference in PAR source, changes in O_2 consumption in the light, cyclic electron transport around PSII, and Mehler-type reactions have been proposed.

The slight decrease of x^C with temperature for *Ph. tricornutum* could be explained by an apparent decrease of the chl a to C ratio, as x^C (carbon-specific) often is correlated with the chl a to C ratio, since light absorption is correlated with chl a (MacIntyre et al. 2002). The chl a to C ratio for *Pro. minimum* and *Pry. parvum* was constant across the temperature range (except for a drop at 30°C for *Pry. parvum*, Table 5).

A mathematical consequence of the similar offset of F_{PSII} compared with F_{O2} and $F_{^{14}C}$, for both F_{max} and x^C, resulted in similar values for E_k for the three methods. Hence, E_k for the three applied methods responded in parallel across the entire range of temperature, and we conclude that temperature responses on E_k can be studied quantitatively by the PAM technique, applying the present procedure to calculate O_2-production rates from Φ_{PSII}. Contradictory results have been published (Gilbert et al. 2000, MacIntyre et al. 2002). Gilbert et al. (2000) found that Φ_{PSII}-based O_2-production rates most often overestimated the measured O_2-production rates during light saturation, while the rates were similar during light-limited photosynthesis.

CONCLUSIONS

(i) Both calculated and measured O_2-production rates along with 14C-assimilation rates showed the same relative response to a short-term temperature change, for the three studied microalgal species. This finding implies that the PAM technique analogous to O_2-production and 14C-assimilation measurements can be applied to study relative temperature responses of photosynthesis versus irradiance relations. (ii) Absolute rates of calculated O_2 production based on Φ_{PSII} showed a species-specific correlation and overestimated the measured O_2-production rates of ~1–3 times during both light-limited (x^L) and light-saturated (F_{max}) photosynthesis. The offset of the Φ_{PSII}-based measurements was due to a lower quantum yield for O_2 production than the theoretical maximum and seemed to be insensitive to temperature. The lower quantum yield for O_2 production can possibly be ascribed to irradiance-induced Mehler-type reactions. (iii) The maximum quantum yield for both PSII and O_2 production decreased with increasing temperature, the latter considerably stronger than the first. (iv) Φ_{PSII} obtained with the PAM technique in combination with biooptically determined light absorption in PSII can be used as a valuable tool for studying temperature dependence of physiological processes in combination with O_2 and 14C studies.

We would like to acknowledge E. Sakshaug for constructive comments and criticism on the manuscript and C. Pelabon for statistical advice. Two anonymous reviewers are thanked for constructive comments that improved the manuscript. Financial support from the Norwegian Research Council for K. H. (project no. 155936/700 for ‘CABANERA’) and L. M. O. (contract: 143511/213) is acknowledged. R. G. acknowledges financial support by the Danish National Research Council (# 21404-039).

